943 Colle 11

Sujet 1

— Exercice 1 : Question de cours —

Lemme d'Abel avec sa preuve.

— Exercice 2

Soit $\alpha \in \mathbb{R}$ fixé.

On définit la suite de fonction $f_n:[0,1]\to\mathbb{R}$ par :

$$f_n(x) = n^{\alpha} x (1 - x)^n$$

- 1. Étudier la convergence simple.
- 2. Pour quelles valeurs de α la convergence est-elle uniforme?

— Exercice 3

Montrer en justifiant l'existence de tous les éléments :

$$\lim_{n \to +\infty} n \int_{1}^{+\infty} e^{-x^{n}} dx = \int_{1}^{+\infty} \frac{e^{-x}}{x} dx.$$

943 Colle 11

Sujet 2

— Exercice 1 : Question de cours

Série entière : Convergence absolue à l'intérieur du disque de convergence (|z| < R), divergence grossière à l'extérieur (|z| > R).

— Exercice 2

Étudier la convergence simple puis uniforme sur $[0, +\infty[$ de la suite de fonctions définies par :

$$f_n(x) = \frac{x}{n(1+x)^n}$$

— Exercice 3

On considère la suite $(u_n)_{n\in\mathbb{N}}$ de fonctions définies sur [0,1] par : $u_n(0)=0$ et $u_n(x)=(-1)^{n+1}x^{2n+2}\ln(x)$ pour $x\in]0,1]$.

- 1. Déterminer la somme de la série de fonctions $\sum_{n\geq 0} u_n$.
- 2. Montrer que la convergence est uniforme sur [0, 1].
- 3. En déduire l'égalité : $\int_0^1 \frac{\ln(x)}{1+x^2} dx = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{(2n+1)^2}.$

943 Colle 11

Sujet 3

— Exercice 1 : Question de cours

Donner un énoncé précis pour le théorème d'intégration terme à terme sur un intervalle quelconque.

— Exercice 2

Étudier l'existence et déterminer la limite de

$$I_n = \int_0^{+\infty} \frac{n \cos t}{1 + n^2 t^2} \mathrm{d}t.$$

Exercice 3

On considère la suite de fonctions définies sur [0, 1] par :

$$u_0(x) = 1$$
 et $u_{n+1}(x) = 1 + \int_0^x u_n(t - t^2) dt$.

1. Montrer que pour tout $x \in [0, 1]$,

$$0 \leqslant u_{n+1}(x) - u_n(x) \leqslant \frac{x^{n+1}}{(n+1)!}.$$

- 2. En déduire que la suite (u_n) converge uniformément sur [0,1] vers une fonction u.
- 3. Montrer que u est dérivable et vérifie l'équation fonctionnelle :

$$u'(x) = u(x - x^2)$$